[ Pobierz całość w formacie PDF ]
Table 7-1 DOUBLE PRECISION libm Functions
Variables c, l, p, s, u, x, and y d_acos( x ) DOUBLE PRECISION Function arc cosine
are of type DOUBLE PRECISION. d_acosd( x ) DOUBLE PRECISION Function
d_acosh( x ) DOUBLE PRECISION Function arc cosh
If you use one of these DOUBLE d_acosp( x ) DOUBLE PRECISION Function
PRECISION functions, put it d_acospi( x ) DOUBLE PRECISION Function
into a DOUBLE PRECISION
d_atan( x ) DOUBLE PRECISION Function arc tangent
statement (or type it by some
d_atand( x ) DOUBLE PRECISION Function
IMPLICIT statement).
d_atanh( x ) DOUBLE PRECISION Function arc tanh
d_atanp( x ) DOUBLE PRECISION Function
sind(x),asind(x), & involve
d_atanpi( x ) DOUBLE PRECISION Function
degrees rather than radians.
d_asin( x ) DOUBLE PRECISION Function arc sine
d_asind( x ) DOUBLE PRECISION Function
d_asinh( x ) DOUBLE PRECISION Function arc sinh
d_asinp( x ) DOUBLE PRECISION Function
d_asinpi( x ) DOUBLE PRECISION Function
d_atan2(( y, x ) DOUBLE PRECISION Function arc tangent
d_atan2d( y, x ) DOUBLE PRECISION Function
d_atan2pi( y, x ) DOUBLE PRECISION Function
380 FORTRAN 77 Reference Manual
7
Table 7-1 DOUBLE PRECISION libm Functions (Continued)
d_cbrt( x ) DOUBLE PRECISION Function cube root
d_ceil( x ) DOUBLE PRECISION Function ceiling
d_copysign( x, x ) DOUBLE PRECISION Function
d_cos( x ) DOUBLE PRECISION Function cosine
d_cosd( x ) DOUBLE PRECISION Function
d_cosh( x ) DOUBLE PRECISION Function hyperbolic cos
d_cosp( x ) DOUBLE PRECISION Function
d_cospi( x ) DOUBLE PRECISION Function
d_erf( x ) DOUBLE PRECISION Function error function
d_erfc( x ) DOUBLE PRECISION Function
d_expm1( x ) DOUBLE PRECISION Function (e**x)-1
d_floor( x ) DOUBLE PRECISION Function floor
d_hypot( x, y ) DOUBLE PRECISION Function hypotenuse
d_infinity( ) DOUBLE PRECISION Function
d_j0( x ) DOUBLE PRECISION Function bessel
d_j1( x ) DOUBLE PRECISION Function
d_jn( x ) DOUBLE PRECISION Function
id_finite( x ) INTEGER Function
id_fp_class( x ) INTEGER Function
id_ilogb( x ) INTEGER Function
id_irint( x ) INTEGER Function
id_isinf( x ) INTEGER Function
id_isnan( x ) INTEGER Function
id_isnormal( x ) INTEGER Function
id_issubnormal( x ) INTEGER Function
id_iszero( x ) INTEGER Function
id_signbit( x ) INTEGER Function
d_addran() DOUBLE PRECISION Function random
d_addrans(x, p, l, u) n/a Function number
d_lcran() DOUBLE PRECISION Subroutine generators
d_lcrans(x, p, l, u ) n/a Subroutine
d_shufrans(x, p, l,u) n/a Subroutine
d_lgamma( x ) DOUBLE PRECISION Function log gamma
d_logb( x ) DOUBLE PRECISION Function
d_log1p( x ) DOUBLE PRECISION Function
d_log2( x ) DOUBLE PRECISION Function
FORTRAN 77 Library Routines 381
7
Table 7-1 DOUBLE PRECISION libm Functions (Continued)
d_max_normal() DOUBLE PRECISION Function
d_max_subnormal() DOUBLE PRECISION Function
d_min_normal() DOUBLE PRECISION Function
d_min_subnormal() DOUBLE PRECISION Function
d_nextafter( x, y ) DOUBLE PRECISION Function
d_quiet_nan( n ) DOUBLE PRECISION Function
d_remainder( x, y ) DOUBLE PRECISION Function
d_rint( x ) DOUBLE PRECISION Function
d_scalb( x, y ) DOUBLE PRECISION Function
d_scalbn( x, n ) DOUBLE PRECISION Function
d_signaling_nan( n ) DOUBLE PRECISION Function
d_significand( x ) DOUBLE PRECISION Function
d_sin( x ) DOUBLE PRECISION Function sine
d_sind( x ) DOUBLE PRECISION Function
d_sinh( x ) DOUBLE PRECISION Function hyperbolic sin
d_sinp( x ) DOUBLE PRECISION Function
d_sinpi( x ) DOUBLE PRECISION Function
d_sincos( x, s, c ) n/a Subroutine sine and cosine
d_sincosd( x, s, c ) n/a Subroutine
d_sincosp( x, s, c ) n/a Subroutine
d_sincospi( x, s, c ) n/a Subroutine
d_tan( x ) DOUBLE PRECISION Function tangent
d_tand( x ) DOUBLE PRECISION Function
d_tanh( x ) DOUBLE PRECISION Function hyperbolic tan
d_tanp( x ) DOUBLE PRECISION Function
d_tanpi( x ) DOUBLE PRECISION Function
d_y0( x ) DOUBLE PRECISION Function bessel
d_y1( x ) DOUBLE PRECISION Function
d_yn( n,x ) DOUBLE PRECISION Function
See also: intro(3M) and the Numerical Computation Guide.
382 FORTRAN 77 Reference Manual
7
7.34 libm_quadruple:libm Quad-Precision Functions
These subprograms are quadruple-precision (REAL*16) libm functions and
subroutines (SPARC only).
Intrinsic Functions
The following FORTRAN 77 intrinsic functions return quadruple-precision
values if they have quadruple-precision arguments. You need not put them in
a type statement. If the function needed is available as an intrinsic function, it
is simpler to use an intrinsic than a non-intrinsic function.
The symbol indicates it is sqrt(x) asin(x) cosd(x)
nonstandard that this is an
log(x) acos(x) asind(x)
intrinsic function.
log10(x) atan(x) acosd(x)
exp(x) atan2(x,y) atand(x)
x**y sinh(x) atan2d(x,y)
sin(x) cosh(x) aint(x)
cos(x) tanh(x) anint(x)
tan(x) sind(x) nint(x)
Non-Intrinsic Functions
In general, these do not correspond to standard generic intrinsic functions; data
types are determined by the usual data typing rules.
Samples: Quadruple precision functions:
The quadruple precision REAL*16 c, q_acosh, q_hypot, q_infinity, s, x, y, z
functions used are in aREAL*16
...
statement.
z = q_acosh( x )
i = iq_finite( x )
z = q_hypot( x, y )
z = q_infinity()
CALL q_sincos( x, s, c )
FORTRAN 77 Library Routines 383
7
Table 7-2 Quadruple-Precision libm Functions
The variablesc,l,p,s,u,x, and q_copysign( x, y ) REAL*16 Function
y are of type quadruple precision.
q_fabs( x ) REAL*16 Function
q_fmod( x ) REAL*16 Function
q_infinity( ) REAL*16 Function
If you use one of these quadruple
precision functions, put it into a
iq_finite( x ) INTEGER Function
REAL*16 statement (or type it by
iq_fp_class( x ) INTEGER Function
someIMPLICIT statement).
iq_ilogb( x ) INTEGER Function
iq_isinf( x ) INTEGER Function
iq_isnan( x ) INTEGER Function
sind(x),asind(x), & involve
iq_isnormal( x ) INTEGER Function
degrees rather than radians.
iq_issubnormal( x ) INTEGER Function
For meanings of routines and
iq_iszero( x ) INTEGER Function
arguments, typeman on the
iq_signbit( x ) INTEGER Function
[ Pobierz całość w formacie PDF ]